Abstract
Pyramidal inversion domains (PIDs) with (0001) bases several nanometers wide are commonly observed in highly Mg-doped GaN epitaxial layers. High-angle annular dark field scanning transmission electron microscopy clarified the PID boundary structure, concluding debate on previously proposed Mg segregation models: Mg atoms segregate to form a single atomic layer at the boundary and substitute 1/4 of Ga atoms in the neighboring Ga layers. We explain that the Mg segregation produces electrically inactive Mg atoms and can be a cause of the free carrier reduction in the highly Mg-doped GaN. The PID formation process during the epitaxial growth is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.