Abstract

Bulk Td-WTe2 is a semimetal, while its monolayer counterpart is a two-dimensional (2D) topological insulator. Recently, electronic transport resembling a Luttinger liquid state was found in twisted-bilayer WTe2 (tWTe2) with a twist angle of ∼5°. Despite the strong interest in 2D WTe2 systems, little experimental information is available about their intrinsic microstructure, leaving obstacles in modeling their physical properties. The monolayer, and consequently tWTe2, are highly air-sensitive, and therefore, probing their atomic structures is difficult. In this study, we develop a robust method for atomic-resolution visualization of monolayers and tWTe2 obtained through mechanical exfoliation and fabrication. We confirm the high crystalline quality of mechanically exfoliated WTe2 samples and observe that tWTe2 with twist angles of ∼5 and ∼2° retains its pristine moiré structure without substantial deformations or reconstructions. The results provide a structural foundation for future electronic modeling of monolayer and tWTe2 moiré lattices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.