Abstract

The atomic rearrangement in metallic glass (MG) is a dynamics process. However, this problem has always been investigated within the quasi-static limit of the material. As such, the physical mechanisms of how the local rearrangements nucleate and coalesce into shear bands have not been fully understood. This study is to clarify the issue with the aid of a systematic molecular dynamics analysis. The present study unveils that the underlying mechanism of plastic deformation is through the rearrangement of atoms, characterized by the sudden surge in kinetic energy or strain rate of a local region, and that the shear banding is a stress-driven dynamic coalescence of these rearranging clusters, propagating in the speed of a shear wave. The ratio of the internal strain rate in forming a cluster to the applied strain rate is a measure of the severity of the local atomic rearrangement. The larger the severity, the easier the shear banding forms. The additional kinetic energy associated with the atom rearrangement in clustering is due to the descending of the potential energy after crossing the energy barrier. As temperature increases, the thermal vibration energy becomes larger than the barrier height, leading to thermal activations in MG and hence giving rise to a homogeneous deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.