Abstract

The quantum chemical topology (QCT) is able to propose atom types by direct computation rather than by chemical intuition. In previous work, molecular electron densities of 20 amino acids and smaller derived molecules were partitioned into a set of 760 topological atoms. Each atom was characterised by seven atomic properties and subjected to cluster analysis element by element, that is, C, H, O, N, and S. From the respective dendrograms, 21 carbon atom types were distinguished, 7 hydrogen, 2 nitrogen, 6 oxygen, and 6 sulfur atom types. Herein, we contrast the QCT atom types with those of the assisted model building with energy refinement (AMBER) force field. We conclude that in spite of fair agreement between QCT and AMBER atom types, the latter are sometimes underdifferentiated and sometimes overdifferentiated. In summary, we suggest that QCT is a useful guide in designing new force fields or improving existing ones. The computational origin of QCT atom types makes their determination unbiased compared to atom type determination by chemical intuition and a priori assumptions. We provide a list of specific recommendations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call