Abstract

Here we summarize recent experimental work in the field of atomic origami: the folding of 3D structures from sheets that are just atoms thick. We highlight current techniques for folding at the microscale and provide scaling arguments as to why some approaches work better than others at small sizes. Finally, we point out that for folding structures made from 2D materials, miniaturization can extend another three orders of magnitude: current state of the art devices are microns in size while, as a platform, atomic membranes should be foldable down to the nanoscale. The ability to scale folding structures over a wide range in size could open diverse applications, from microscopic robots to new interfaces with biology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call