Abstract
High-quality, large-scale graphene holds significant potential for future electronic applications because of its exceptional properties. Among the various graphene production methods, chemical vapor deposition (CVD) has emerged as a promising approach for the industrial-scale fabrication of electronic-grade graphene films. Although large-area graphene films are being produced using advanced variants of conventional CVD systems, their quality can be further improved. In the past decade, significant progress has been made in the CVD-based fabrication of large-area, high-quality graphene, driven by strategies for controlling growth parameters such as the heating mode in CVD, graphene nucleation density, and crystal orientation of the growth substrate. In this review, we present key findings on the CVD-based production of large-area, high-quality graphene using established strategies, and highlight the advantages and challenges. Additionally, we introduce a novel approach to growing high-quality graphene based on recrystallization—the use of a mobile hot-wire CVD system that can provide localized heat energy in a dynamic manner. We cover various synthesis strategies that leverage this system to induce changes in graphene properties and explore their potential applications. Finally, based on a comprehensive understanding of the corresponding growth mechanisms, we offer insights into the CVD-based synthesis of large-area, high-quality graphene films and examine its prospects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Current Opinion in Solid State & Materials Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.