Abstract

AbstractAtomic‐molecular engineering is an effective way to accurately tailor the microstructures and components of materials at the micro‐nano scale, which can be applied to flexibly manipulate their electromagnetic (EM) response. Herein, graphene microlaminates with multi‐layer structure are fabricated by atomic cluster engineering and oxidative molecular layer deposition for the first time. The microlaminates enable a tunable EM loss (from 0.93 to 3.94 for imaginary permittivity and from 0.17 to 0.25 for imaginary permeability) by changing poly(3,4‐ethylenedioxythiophene) cycles, and the attenuation constant reaches 160. On this basis, multifunctional antennas are conceived, achieving frequency‐selective response that enables steady harvest of > 90% of EM energy from signal source, and tactfully recycling waste heat energy and mechanical energy. This study will furnish a new horizon for information transmission and artificial intelligence in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call