Abstract

We define a new statistic on Weyl groups called the atomic length and investigate its combinatorial and representation-theoretic properties. In finite types, we show a number of properties of the atomic length which are reminiscent of the properties of the usual length. Moreover, we prove that, with the exception of rank two, this statistic describes an interval. In affine types, our results shed some light on classical enumeration problems, such as the celebrated Granville–Ono theorem on the existence of core partitions, by relating the atomic length to the theory of crystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.