Abstract

Atomic layer deposition (ALD) of metal selenide and telluride thin films has been limited because of a lack of precursors that would at the same time be safe and exhibit high reactivity as required in ALD. Yet there are many important metal selenide and telluride thin film materials whose deposition by ALD might be beneficial, for example, CuInSe2 for solar cells and Ge2Sb2Te5 for phase-change random-access memories. Especially in the latter case highly conformal deposition offered by ALD is essential for high storage density. By now, ALD of germanium antimony telluride (GST) has been attempted only using plasma-assisted processes owing to the lack of appropriate tellurium precursors. In this paper we make a breakthrough in the development of new ALD precursors for tellurium and selenium. Compounds with a general formula (R3Si)2Te and (R3Si)2Se react with various metal halides forming the corresponding metal tellurides and selenides. As an example, we show that Sb2Te3, GeTe, and GST films can be deposited by ALD using (Et3Si)2Te, SbCl3, and GeCl2 x C4H8O2 compounds as precursors. All three precursors exhibit a typical saturative ALD growth behavior and GST films prepared at 90 degrees C show excellent conformality on a high aspect-ratio trench structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.