Abstract

Using coaxial impact collision ion scattering spectroscopy (CAICISS), scanning tunneling microscopy (STM), and low-energy electron diffraction (LEED) techniques, we have investigated the interaction of atomic hydrogen with the Si(111)√3×√3-In surface phase at elevated temperatures and structural behavior of In clusters induced by the interaction. Upon atomic hydrogen interaction, SiIn bonds are broken and replaced by SiH bonds. As a result, the √3×√3 reconstruction is destroyed and small In clusters are formed on hydrogen-terminated Si(111)1×1 surface. Using STM, we also have found that the size of the In cluster increases with increasing substrate temperature during hydrogen exposure of the √3×√3-In surface phase. From CAICISS experimental results, we have found that atomic-hydrogen-induced In clusters for Si(111)√3×√3-In surface phase have an In(100) crystalline structure, while those for Si(001)4×3-In surface phase are polycrystalline. In conclusion, we have found that structural differences of surface give rise to different atomic-hydrogen-induced self-organization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call