Abstract

In this work, via engineering the conformation of cobalt active center in cobalt phthalocyanine molecular catalyst, the catalytic efficiency of electrochemical carbon monoxide reduction to methanol can be dramatically tuned. Based on a collection of experimental investigations and density functional theory calculations, it reveals that the electron rearrangement of the Co 3d orbitals of cobalt phthalocyanine from the low-spin state (S = 1/2) to the high-spin state (S = 3/2), induced by molecular conformation change, is responsible for the greatly enhanced CO reduction reaction performance. Operando attenuated total reflectance surface-enhanced infrared absorption spectroscopy measurements disclose accelerated hydrogenation of CORR intermediates, and kinetic isotope effect validates expedited proton-feeding rate over cobalt phthalocyanine with high-spin state. Further natural population analysis and density functional theory calculations demonstrate that the high spin Co2+ can enhance the electron backdonation via the dxz/dyz−2π* bond and weaken the C-O bonding in *CO, promoting hydrogenation of CORR intermediates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.