Abstract

For decades, infrared (IR) spectroscopy has advanced on two distinct frontiers: enhancing spatial resolution and broadening spectroscopic information. Although atomic force microscopy (AFM)-based IR microscopy overcomes Abbe's diffraction limit and reaches sub-10 nm spatial resolutions, time-domain two-dimensional IR spectroscopy (2DIR) provides insights into molecular structures, mode coupling and energy transfers. Here we bridge the boundary between these two techniques and develop AFM-2DIR nanospectroscopy. Our method offers the spatial precision of AFM in combination with the rich spectroscopic information provided by 2DIR. This approach mechanically detects the sample's photothermal responses to a tip-enhanced femtosecond IR pulse sequence and extracts spatially resolved spectroscopic information via FFTs. In a proof-of-principle experiment, we elucidate the anharmonicity of a carbonyl vibrational mode. Further, leveraging the near-field photons' high momenta from the tip enhancement for phase matching, we photothermally probe hyperbolic phonon polaritons in isotope-enriched h10BN. Our measurements unveil an energy transfer between phonon polaritons and phonons, as well as among different polariton modes, possibly aided by scattering at interfaces. The AFM-2DIR nanospectroscopy enables the in situ investigations of vibrational anharmonicity, coupling and energy transfers in heterogeneous materials and nanostructures, especially suitable for unravelling the relaxation process in two-dimensional materials at IR frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.