Abstract
The agglomeration phenomena of a few nanometer thick Au/Fe bilayers, grown on an MgO(100) substrate, were studied by using atomic force microscopy and x ray diffraction (XRD). The authors found that the insertion of an Fe ultrathin layer between an MgO(100) substrate and a 4 nm thick Au layer promotes the agglomeration process of the Au layer, in which the bilayer structure changes into large Fe/Au islands of ∼200 nm in diameter. In addition, XRD results revealed that the Au in the agglomerated islands has only a (111)-crystallographic orientation, presumably caused by reducing the large surface energy of Au on the MgO(001) substrate. These findings are quite different from cases in which structural stabilization is achieved by inserting an Fe seeding layer of a few nanometers on an MgO(001) substrate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.