Abstract

Combining the bond-order-length-strength (BOLS) and atomic bonding and electronic model (BB model) with density functional theory (DFT) calculations, we studied the atomic bonding and electronic binding energy behavior of Bi atoms adsorbed on the Li(110) surface. We found that the Bi atoms adsorbed on the Li(110) surface form two-dimensional (2D) geometric structures, including letter-, hexagon-, galaxy-, crown-, field-, and cobweb-shaped structures. Thus, we obtained the following quantitative information: (i) the field-shaped structure can be considered the bulk structure; (ii) the field-shaped structure of Bi atom formation has a 5d energy level of 22.727 eV, and in the letter shape structure, this energy is shifted to values greater than 0.342 eV; and (iii) the Bi/Li(110) heterojunction transfers charge from the inner Li atomic layer to the outermost Bi atomic layer. In addition, we analyzed the bonding and electronic dynamics involved in the formation of the Bi/Li(110) heterojunctions using residual density of states. This work provides a theoretical reference for the fine tuning of binding energies and chemical bonding at the interfaces of 2D metallic materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.