Abstract

Solid state 93Nb nuclear magnetic resonance spectroscopy has been employed to investigate the atomic and electronic structures in Ni-Nb based metallic glass (MG) model system. 93Nb nuclear magnetic resonance (NMR) isotropic metallic shift of Ni60Nb35Sn5 has been found to be ∼100 ppm lower than that of Ni60Nb35Zr5 MG, which is correlated with their intrinsic fracture toughness. The evolution of 93Nb NMR isotropic metallic shifts upon alloying is clearly an electronic origin, as revealed by both local hyperfine fields analysis and first-principle computations. This preliminary result indicates that, in addition to geometrical considerations, atomic form factors should be taken into a description of atomic structures for better understanding the mechanical behaviors of MGs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call