Abstract

AbstractAtom transfer radical addition (ATRA) of halogenated compounds with alkenes is well established but primary alkyl chlorides are understudied because of the difficult C−Cl bond activation. In this paper, we show that TONs of 61 can be achieved in the ATRA of ethyl chloroacetate onto styrene with [Cp*Ru(Cl)2(PPh3)] and 1,1′‐azobis(cyclohexanecarbonitrile) (ACHN) as a radical initiator, representing a three‐fold improvement compared to previous reports. New catalyst precursors of the type [Cp*Ru(Cl)2(PR3)] were synthesized and tested (R=Me, Et, Cy, Ph, p‐CF3C6H4 and p‐MeOC6H4). The kinetic reaction profiles were studied using in situ ATR−FTIR spectroscopy. Among these complexes, [Cp*Ru(Cl)2(PPh3)] gave the best yields while [Cp*Ru(Cl)2(PMe3)] showed the highest rate. While rates correlate with redox potentials (electronics), our investigation reveals that substrate sterics are important for the overall yield. Density functional theory calculations suggest an open‐shell singlet pathway, where polymerization is kinetically disfavored, explaining the selectivity towards ATRA products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.