Abstract
The efficiency of surface treatments by plasma and post-discharge plasma processes is greatly dependent on the density of active species, such as neutral atoms in post-discharges. Therefore, many diagnostics exist to detect the presence and measure the concentrations of these species, but they often require expensive instrumentation and highly qualified personnel. These conditions are not often met when the process is industrially used and it becomes important to imagine simple indicators allowing to validate that the correct operating conditions are reached. In the present paper, we present the first results on the investigation of an inexpensive and easy to use visual indicator able to quantify the atomic species density in nitrogen post-discharge plasma processes. It is based on the differential recombination coefficients of N-atoms on metallic/textile fibres which are intrinsically bonded together in a fabric matrix which serves as support for a thermochromic ink. The specific heating of the metallic fibres by N-atom recombination heats the whole of the fabric, leading to a visible colour change of the thermochromic ink, and therefore, of the indicator. Through modelling, it was possible to estimate that the inclusion of copper fibres to a pure cotton matrix leads to a 60% increase of the global N-atom recombination coefficient of the fabric, sufficient enough to provide a clearly visible colour change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.