Abstract

Atomic-scale structures and dynamic behaviors of CeO 2(1 1 1) surfaces were imaged by noncontact atomic force microscopy (NC-AFM) and scanning tunneling microscopy (STM). Hexagonally arranged oxygen atoms, oxygen point vacancies, multiple oxygen vacancies, and hydrogen adatoms at the surfaces were visualized by atom-resolved NC-AFM observations. Multiple defects were stabilized by displacement of the surrounding oxygen atoms around the multiple defects, which gave enhanced brightness in the NC-AFM image due to a geometric reason. Multiple defects without reconstruction of the surrounding oxygen atoms were reactive and were healed by exposure to O 2 gas and methanol at RT. Successive NC-AFM and STM measurements of slightly reduced CeO 2(1 1 1) surfaces revealed that hopping of surface oxygen atoms faced to the metastable multiple defects was thermally activated even at room temperature (RT) and more promoted at higher temperatures. Heterogeneous feature of the reactivity of surface oxygen atoms with methanol was imaged by successive NC-AFM observations. These observations gave a new insight for understanding the surface structures and behavior of CeO 2− x with the facile oxygen reservoir and oxidation–reduction properties related to the unique catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.