Abstract
Using on-demand coherence conversion via optical locking, a dynamic coherent control of the collective atom phase has been demonstrated for longer photon storage beyond the critical constraint of spin phase decay time, where the storage time can be extended up to hours in a rare-earth-doped solid. Coherent transient phenomena such as photon echoes have been investigated for frozen phase decay via coherent population transfer using a simple deshelving optical pulse pair. Unlike the rephasing halt applied to two-pulse photon echoes, where optical decoherence is accelerated by spin inhomogeneous broadening, a completely atom phase-locked coherence conversion has been observed in three-pulse photon echoes, resulting in spin dephasing-free coherence control. Here, the mechanism of the atom phase-locked coherence conversion via optical locking has been investigated in a solid medium whose optical transition is imperfect, where partial coherence is lost via optical depth-dependent imperfect population transfer. The relationship between coherence loss and optical depth is analyzed, where nearly perfect photon echo efficiency can be obtained for ultralong photon storage in an optically thick medium.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have