Abstract
Atom depth, defined as the distance (dpx, Å) of a nonhydrogen atom from its closest solvent-accessible protein neighbor, provides a simple but precise description of the protein interior. Mean residue depths can be easily computed and are very sensitive to structural features. From the analysis of the average and maximum atom depths of a set of 136 protein structures, we derive a limit of ∼200 residues for protein and protein domain size. The average and maximum atom depths in a protein are related to its size but not to the fold type. From the same set of structures, we calculated the mean residue depths for the 20 amino acid types, and show that they correlate well with hydrophobicity scales. We show that dpx values can be used to partition atoms in discrete layers according to their depth and to identify atoms that, although buried, are potential targets for posttranslational modifications like phosphorylation. Finally, we find a correlation between highly conserved residues in structural neighbors of the same fold type, and their mean residue depth in the reference structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.