Abstract

Agriculture fertilization suffers from inefficiencies that carry significant environmental and economic consequences. These consequences include high fertilizer production energy demand, on-field greenhouse gas emissions, and eutrophication. Additionally, inefficient fertilizer use is responsible for billions of dollars in annual economic losses in the form of resource loss as well as environmental burdens. Furthermore, the unsustainability of current fertilization practices and the reliance upon finite resources calls into question the ability of agriculture to meet projected increases in global demand. Herein, critical fertilizer system inefficiencies are highlighted and quantified with a new proposed metric, atom conversion efficiency (ACE), which captures inefficiencies of primary nutrient atoms (N and P) at each stage of the fertilizer life cycle, from synthesis to farm gate, for the model crop, corn. Conversion efficiencies for the most common forms of N and P used in conventional fertilizers range ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.