Abstract
The chemical composition of a low-pressure hydrogen dc plasma produced in a hollow cathode discharge has been measured and modeled. The concentrations of H atoms and of H(+), H(2)(+) and H(3)(+) ions were determined with a combination of optical spectroscopic and mass spectrometric techniques, over the range of pressures (p approximately 0.008-0.2 m bar) investigated. The results were rationalized with the help of a zero-order kinetic model. A comparatively high fraction ( approximately 0.1+/-0.05) of H atoms, indicative of a relatively small wall recombination, was observed. Low ionization degrees (<10(-4)) were obtained in all cases. In general, the ionic composition of the plasma was found to be dominated by H(3)(+), except at the lowest pressures, where H(2)(+) was the major ion. The key physicochemical processes determining the plasma composition were identified from the comparison of experimental and model results, and are discussed in the paper.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have