Abstract

In order to improve the production quality and qualification rate of chips, X-ray nondestructive imaging technology has been widely used in the detection of chip defects, which represents an important part of the quality inspection of products after packaging. However, the current traditional defect detection algorithm cannot meet the demands of high accuracy, fast speed, and real-time chip defect detection in industrial production. Therefore, this paper proposes a new multi-scale feature fusion module (ATSPPF) based on convolutional neural networks, which can more fully extract semantic information at different scales. In addition, based on this module, we design a deep learning model (ATNet) for detecting lead defects in chips. The experimental results show that at 8.2 giga floating point operations (GFLOPs) and 146 frames per second (FPS), mAP0.5 and mAP0.5-0.95 can achieve an average accuracy of 99.4% and 69.3%, respectively, while the detection speed is faster than the baseline yolov5s by nearly 50%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.