Abstract

Abstract The exchange between the Red Sea and the Indian Ocean on synoptic time scales (days to weeks) is investigated using moored current meter data collected in the strait of Bab el Mandeb from June 1995 to November 1996. Transport variations through the strait on these time scales can reach amplitudes of up to 0.6 Sv (1 Sv ≡ 106 m3 s−1), or nearly twice as large as the mean rate of exchange through the strait driven by annual evaporation over the Red Sea. The synoptic transport variability appears to be driven by two primary forcing mechanisms: 1) local wind stress variability over the strait and 2) variation in the large-scale barometric pressure over the Red Sea. Simple models of the forced response are developed and are shown to reproduce the essential features of the observations. The response to barometric pressure forcing over the Red Sea is fundamentally barotropic, whereas the response to along-strait winds is barotropic at high frequencies and tends toward a two-layer exchange at low frequencies. The responses to both types of forcing show enhanced amplitude at the Helmholtz resonance frequency for the Red Sea, which occurs at a period of about 5 days. A linear two-layer model, incorporating both types of forcing and a reasonable frictional parameterization, is shown to account for about 70% of the observed transport variance within the strait.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.