Abstract

We report a low temperature atmospheric pressure chemical vapor deposition technique to deposit titanium oxide films on silicon wafers. The growth is achieved by using TiCl·H2O2 and O2 at temperatures ranging from 140 to 280°C. Addition of H2O2 yields a significant reduction in the surface roughness with an enhanced deposition rate at temperatures as low as 170°C. Growth at temperatures below 140°C results in insignificant growth whereas at high temperatures a hazy and three-dimensional growth is observed. Using this technique a growth rate as high as 0.5μm/h can be obtained with little roughness on the surface of the substrate. XRD, SEM, and FTIR analyses have been exploited to study the physical behavior of the layers. The electrical characterization of the films reveals a relative permittivity (εr) of 19–21 for the samples prepared with H2O2. A breakdown field of 1×107V/cm is also obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.