Abstract

In this work, indium oxide nanostructured films were synthesized by hydrogen assisted atmospheric pressure chemical vapor deposition technique at various deposition temperatures. The surface morphology, crystallinity, and optical properties of the synthesized films were investigated by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and UV–vis-NIR measurement, respectively. Photoelectrochemical (PEC) activity of the fabricated films was investigated in a 0.5 M aqueous solution of KOH under simulated solar illumination (150 W Xenon arc lamp). The result of the indium oxide photoanodes' PEC performance shows that the sample grown at 950°C exhibited optimal performance. It generates an overall photocurrent density of 2.56 mA/cm2, with an incident photon to current conversion efficiency (IPCE) of 37% around λ=390 nm of the incident spectrum. The sample also recorded a significant applied bias to photon conversion efficiency (ABPE) of 0.60%. The superiority of the PEC performance of the sample could be attributed to the film composition, crystallinity and bandgap reduction, as well as low flat band potential and enhanced charge carrier density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.