Abstract
In this manuscript, the authors investigate the growth of indium zinc oxide, indium zinc oxide (InZnO, IZO) as a channel material for thin-film transistors. IZO is grown at atmospheric pressure and a high deposition rate using spatial atomic layer deposition (S-ALD). By varying the ratio of diethylzinc and trimethylindium vapor, the In/(In + Zn) ratio of the film can be accurately tuned in the entire range from zinc oxide to indium oxide. Thin film transistors with an In to Zn ratio of 2:1 show high field-effect mobility—exceeding 30 cm2/V s—and excellent stability. The authors demonstrate large scale integration in the form of 19-stage ring oscillators operating at 110 kHz. These electrical characteristics, in combination with the intrinsic advantages of atomic layer deposition, demonstrate the great potential of S-ALD for future display production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.