Abstract
Volatile organic compounds (VOCs) are significant precursors to photochemical pollution. However, reactive VOC species are easily oxidized during transportation, resulting in a systematic underestimate of the measured concentrations. To address this, we applied an improved calculation method to correct the measured VOC concentrations into photochemical initial concentrations (PICs) in Chengdu, a megacity in the Sichuan Basin, China, which is highly vulnerable to complex pollution. In this study, 56 VOC species on the Photochemical Assessment Monitor Station (PAMS) target list were quantitatively monitored throughout all four seasons. Comparing to directly measured values, photochemically initialized total mixing ratios of VOCs increased by 18.6 % in general. The photochemical loss percentages of alkenes and aromatics were prominent in summer (68.6 %, 28.7 %) and spring (65.9 %, 24.7 %), respectively. Furthermore, we examined contributions of VOCs to atmospheric oxidation capacity (AOC) depending on PICs and found that maximum daily total AOC showed a surge in spring and summer. Besides hydroxyl radicals, daytime O3 in spring and late-afternoon nitrate radicals in summer were essential for AOC with PICs. As expected, alkenes and aromatics dominated PIC-based ozone formation potentials (OFPs). Furthermore, contribution of alkenes to secondary organic aerosol formation potentials reached 15.5 % and 7.6 % in spring and summer, respectively. Using positive matrix factorization model, we identified five VOC sources including vehicular exhaust, industrial emissions, solvent usage, biogenic sources, and liquefied petroleum gas/natural gas use. Based on PICs, biogenic sources were significantly underestimated in spring and summer. Meanwhile, m,p-xylene from solvent usage and isoprene from biogenic sources were the primary contributors to OFPs. Consequently, these results emphasize the significance of photochemically oxidized VOC concentrations, especially for reactive species in typical seasons.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have