Abstract

Abstract The existence of quasi-stationary alongshore atmospheric fronts typically located 30–70 km off the east coast of Taiwan is demonstrated by analyzing synthetic aperture radar (SAR) images of the sea surface acquired by the European Remote Sensing Satellites ERS-1 and ERS-2. For the data interpretation, cloud images from the Japanese Geostationary Meteorological Satellite GMS-4 and the American Terra satellite, rain-rate maps from ground-based weather radars, sea surface wind data from the scatterometer on board the Quick Scatterometer (QuikSCAT) satellite, and meteorological data from weather maps and radiosonde ascents have also been used. It is shown that these atmospheric fronts are generated by the collisions of the two airflows from opposing directions: one is associated with a weak easterly synoptic-scale wind blowing against the high coastal mountain range at the east coast of Taiwan and the other with a local offshore wind. At the convergence zone where both airflows collide, air is forced to move upward, which often gives rise to the formation of coast-parallel cloud bands. There are two hypotheses about the origin of the offshore wind. The first one is that it is a thermally driven land breeze/katabatic wind, and the second one is that it is wind resulting from recirculated airflow from the synoptic-scale onshore wind. Air blocked by the mountain range at low Froude numbers is recirculated and flows at low levels back offshore. Arguments in favor of and against the two hypotheses are presented. It is argued that both the recirculation of airflow and land breeze/katabatic wind contribute to the formation of the offshore atmospheric front but that land breeze/katabatic wind is probably the main cause.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.