Abstract

Abstract Frontal lines having offshore distances typically between 40 and 80 km are often visible on synthetic aperture radar (SAR) images acquired over the east coast of Taiwan by the European Remote Sensing Satellites 1 and 2 (ERS-1 and ERS-2) and Envisat. In a previous paper the authors showed that they are of atmospheric and not of oceanic origin; however, in that paper they did not give a definite answer to the question of which physical mechanism causes them. In this paper the authors present simulations carried out with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model, which shows that the frontal lines are associated with a quasi-stationary low-level convergence zone generated by the dynamic interaction of onshore airflow of the synoptic-scale wind with the coastal mountain range of the island of Taiwan. Reversed airflow collides with the onshore-flowing air leading to an uplift of air, which is often accompanied by the formation of bands of increased cloud density and of rainbands. The physical mechanism causing the generation of the frontal lines is similar to the one responsible for the formation of cloud bands off the Island of Hawaii as described by Smolarkiewicz et al. Four SAR images are shown, one acquired by ERS-2 and three by Envisat, showing frontal lines at the east coast of Taiwan caused by this generation mechanism. For these events the recirculation pattern, as well as the frontal (or convective) lines observed, were reproduced quite well with the meteorological model. So, it is argued that the observed frontal lines are not seaward boundaries of (classical) barrier jets or of katabatic wind fields, which have characteristics that are quite different from the flow patterns around the east coast of Taiwan as indicated by the SAR images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.