Abstract
The polarization characteristics of water-leaving radiation contain rich information on oceanic constituents. Determining the atmospheric diffuse transmittance is crucial for extracting the polarization information of water-leaving radiation from the radiation acquired by polarimetry satellites at the top of the atmosphere. However, there is still a lack of understanding of the atmospheric diffuse transmittance of the linear polarization component of water-leaving radiation. Here, we first evaluated the difference between the atmospheric diffuse transmittance of the linear polarization component (TQ, TU) and the intensity component (TI) of the water-leaving radiation based on the Ocean Successive Orders with Atmosphere Advanced radiative transfer model. As a consequence, there were apparent differences between TQ, TU and TI. In the case of a large solar zenith angle and a large viewing zenith angle, the difference between TQ, TU and TI will exceed 1. Meanwhile, compared with TI, the oceanic constituents had a prominent interference with TQ and TU, and the sediment concentration had little interference with TQ and TU in low- and medium-turbidity water with respect to the aerosol model, optical thickness, observation geometry, and phytoplankton. Moreover, TQ and TU lookup tables were generated for medium- and low-turbidity water, which laid the foundation for extracting the water-leaving radiation polarization information from the satellite observation polarization signal.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have