Abstract

AbstractLong‐lasting and severe droughts seriously threaten agriculture, ecosystems, and society. Summer 2018 in central Europe was characterized by unusually persistent heat and drought, causing substantial economic losses, and became a part of a several years long dry period observed across this region. This study assesses the magnitude of the recent drought within a long‐term context and links the increased drought severity to changes in atmospheric circulation. Temporal variability of drought conditions since the late 19th century was analyzed at seven long‐term stations distributed across the Czech Republic using the Palmer Drought Severity Index and the Standardized Precipitation Evaporation Index. The Palmer Z Index and a variation of the Standardized Precipitation Evaporation Index were used to study rapidly emerging short‐term droughts and to link these episodes to atmospheric circulation. Changes in circulation were analyzed through circulation types calculated from flow strength, direction and vorticity in mean sea level pressure data from the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis for 1948–2018. Increasing drought severity across the Czech Republic with record‐low values of the drought indices during 2015–2018 was found. The trend was distinctive in both vegetation (April–September) and cold (October–March) periods. The tendency toward more severe droughts in recent decades was linked to changes in frequency of dry and wet circulation types, highlighting the important role of atmospheric circulation in regional climate. It remains an open question whether the significantly increasing frequency of dry circulation types in the vegetation period is related to climate change, or rather represents multidecadal climate variability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call