Abstract

The OH-initiated degradation of 2-amino-2-methyl-1-propanol [CH3C(NH2)(CH3)CH2OH, AMP] was investigated in a large atmospheric simulation chamber, employing time-resolved online high-resolution proton-transfer reaction-time-of-flight mass spectrometry (PTR-ToF-MS) and chemical analysis of aerosol online PTR-ToF-MS (CHARON-PTR-ToF-MS) instrumentation, and by theoretical calculations based on M06-2X/aug-cc-pVTZ quantum chemistry results and master equation modeling of the pivotal reaction steps. The quantum chemistry calculations reproduce the experimental rate coefficient of the AMP + OH reaction, aligning k(T) = 5.2 × 10–12 × exp (505/T) cm3 molecule–1 s–1 to the experimental value kexp,300K = 2.8 × 10–11 cm3 molecule–1 s–1. The theoretical calculations predict that the AMP + OH reaction proceeds via hydrogen abstraction from the −CH3 groups (5–10%), −CH2– group, (>70%) and −NH2 group (5–20%), whereas hydrogen abstraction from the −OH group can be disregarded under atmospheric conditions. A detailed mechanism for atmospheric AMP degradation was obtained as part of the theoretical study. The photo-oxidation experiments show 2-amino-2-methylpropanal [CH3C(NH2)(CH3)CHO] as the major gas-phase product and propan-2-imine [(CH3)2C=NH], 2-iminopropanol [(CH3)(CH2OH)C=NH], acetamide [CH3C(O)NH2], formaldehyde (CH2O), and nitramine 2-methyl-2-(nitroamino)-1-propanol [AMPNO2, CH3C(CH3)(NHNO2)CH2OH] as minor primary products; there is no experimental evidence of nitrosamine formation. The branching in the initial H abstraction by OH radicals was derived in analyses of the temporal gas-phase product profiles to be BCH3/BCH2/BNH2 = 6:70:24. Secondary photo-oxidation products and products resulting from particle and surface processing of the primary gas-phase products were also observed and quantified. All the photo-oxidation experiments were accompanied by extensive particle formation that was initiated by the reaction of AMP with nitric acid and that mainly consisted of this salt. Minor amounts of the gas-phase photo-oxidation products, including AMPNO2, were detected in the particles by CHARON-PTR-ToF-MS and GC×GC-NCD. Volatility measurements of laboratory-generated AMP nitrate nanoparticles gave ΔvapH = 80 ± 16 kJ mol–1 and an estimated vapor pressure of (1.3 ± 0.3) × 10–5 Pa at 298 K. The atmospheric chemistry of AMP is evaluated and a validated chemistry model for implementation in dispersion models is presented.

Highlights

  • The OH-initiated degradation of 2-amino-2-methyl-1-propanol [CH3C(NH2)(CH3)CH2OH, AMP] was investigated in a large atmospheric simulation chamber, employing time-resolved online high-resolution proton-transfer reaction-time-of-flight mass spectrometry (PTR-ToF-MS) and chemical analysis of aerosol online PTR-ToF-MS (CHARON-PTR-ToF-MS) instrumentation, and by theoretical calculations based on M06-2X/aug-cc-pVTZ quantum chemistry results and master equation modeling of the pivotal reaction steps

  • Norwegian Institute for Public Health (NIPH) has recommended that the total amount of nitrosamines and nitramines in the atmosphere should be below 0.3 ng m−3 in air and below 40 ng dm[3] in drinking water so not to exceed a cancer risk level of 10−5.7 Such low levels are extremely difficult to monitor, and it is important to obtain quantitative information on the degradation pathways for the relevant amines under atmospheric conditions and to implement this information in reliable chemistry models for dispersion calculations

  • The facility and analytical methods have previously been reported in detail;[20] special online instrumentation employed in the present experiments includes a high-resolution proton transfer reaction time-of-flight (PTR-TOF) 8000 instrument (m/Δm > 3000) from Ionicon Analytik GmbH, a prototype chemical analysis of aerosol online (CHARON) inlet[21,22] interfaced to a second PTR-TOF 8000 instrument (m/Δm > 3000) and a compact TOF aerosol mass spectrometry (C-ToF-AMS) instrument from Aerodyne Research Inc.[23]

Read more

Summary

Introduction

The OH-initiated degradation of 2-amino-2-methyl-1-propanol [CH3C(NH2)(CH3)CH2OH, AMP] was investigated in a large atmospheric simulation chamber, employing time-resolved online high-resolution proton-transfer reaction-time-of-flight mass spectrometry (PTR-ToF-MS) and chemical analysis of aerosol online PTR-ToF-MS (CHARON-PTR-ToF-MS) instrumentation, and by theoretical calculations based on M06-2X/aug-cc-pVTZ quantum chemistry results and master equation modeling of the pivotal reaction steps. Norwegian Institute for Public Health (NIPH) has recommended that the total amount of nitrosamines and nitramines in the atmosphere should be below 0.3 ng m−3 in air and below 40 ng dm[3] in drinking water so not to exceed a cancer risk level of 10−5.7 Such low levels are extremely difficult to monitor, and it is important to obtain quantitative information on the degradation pathways for the relevant amines under atmospheric conditions and to implement this information in reliable chemistry models for dispersion calculations Another important consideration is the contribution of amines to the formation of new particles.[8,9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call