Abstract

To map the neural substrate of mental function, cognitive neuroimaging relies on controlled psychological manipulations that engage brain systems associated with specific cognitive processes. In order to build comprehensive atlases of cognitive function in the brain, it must assemble maps for many different cognitive processes, which often evoke overlapping patterns of activation. Such data aggregation faces contrasting goals: on the one hand finding correspondences across vastly different cognitive experiments, while on the other hand precisely describing the function of any given brain region. Here we introduce a new analysis framework that tackles these difficulties and thereby enables the generation of brain atlases for cognitive function. The approach leverages ontologies of cognitive concepts and multi-label brain decoding to map the neural substrate of these concepts. We demonstrate the approach by building an atlas of functional brain organization based on 30 diverse functional neuroimaging studies, totaling 196 different experimental conditions. Unlike conventional brain mapping, this functional atlas supports robust reverse inference: predicting the mental processes from brain activity in the regions delineated by the atlas. To establish that this reverse inference is indeed governed by the corresponding concepts, and not idiosyncrasies of experimental designs, we show that it can accurately decode the cognitive concepts recruited in new tasks. These results demonstrate that aggregating independent task-fMRI studies can provide a more precise global atlas of selective associations between brain and cognition.

Highlights

  • A major challenge to reaching a global understanding of the functional organization of the human brain is that each neuroimaging experiment only probes a small number of cognitive processes

  • Using a database of 30 studies, we demonstrate that our approach captures a rich mapping of the brain, identifying networks with a specific link to cognitive concepts

  • Our final maps combine statistics from forward and reverse inference: functional regions are composed of voxels that are both recruited by the cognitive process of interest and predictive of this process; see S5 Text Consensus between forward and reverse inference for statistical arguments and [27] for more fundamental motivations regarding causal inference

Read more

Summary

Introduction

A major challenge to reaching a global understanding of the functional organization of the human brain is that each neuroimaging experiment only probes a small number of cognitive processes. Cognitive neuroscience is faced with a profusion of findings relating specific psychological functions to brain activity. These are like a collection of anecdotes that the field must assemble into a comprehensive description of the neural basis of mental functions, akin to “playing twenty questions with nature” [1]. On the other hand, aggregating brain responses across studies to refine descriptions of the function of brain regions faces two challenges: First, experiments are often quite disparate and each one is crafted to single out a specific psychological mechanism, often suppressing other mechanisms. Standard brain-mapping analyses enable conclusions on responses to tasks or stimuli, and not on the function of given brain regions

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.