Abstract

Climate change can have cascading impacts on biochemical reactions in aquatic ecosystems. Aquatic ectotherms can adapt to surrounding temperatures by using long-chain polyunsaturated fatty acids (LC-PUFAs) to maintain cell membrane fluidity. In a warming scenario, less LC-PUFA is needed to maintain fluidity. Our objective was to determine the impact of low dietary LC-PUFA and warm water temperature on growth, fatty acid (FA) storage, and expression of lipid metabolism-related transcripts in Atlantic salmon. Salmon (141g) were fed two diets (high or low LC-PUFA) at either 12°C or 16°C for 16weeks. Salmon weighed more and consumed more food at 16°C and when fed the low-LC-PUFA diet. Liver and muscle FA mostly depended on diet rather than temperature. DHA in muscle was higher at 16°C and in salmon fed the high-LC-PUFA diet. Levels of FA desaturation transcripts were more highly expressed at 16°C and in salmon fed the low-LC-PUFA diet, which suggests synthesis of LC-PUFA. Overall, with slow, chronic temperature increases, salmon may adapt to low dietary LC-PUFA by synthesizing more when required.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call