Abstract
Colon cancer (CC) is a highly malignant tumor with a high incidence and poor prognosis. This study aimed to explore the function and molecular mechanisms of activating transcription factor 4 (ATF4) in CC. The expression levels of ATF4, GCN2, and ASNS in CC tissues were measured using immunohistochemistry (IHC) and reverse transcription quantitative PCR (RT-qPCR). Cell counting kit-8 (CCK-8), clone formation, transwell, and flow cytometry assays were conducted to assess cell viability, clonogenicity, migration, invasion, cell cycle, and apoptosis, respectively, in the ATF4 knockdown and overexpression SW480 cell lines. The effect of ATF4 on the expression of GCN2 and ASNS was detected using RT-qPCR, Chip-qPCR, and western blotting. ATF4, GCN2, and ASNS were expressed at low levels in CC tissues, and all had a significant negative correlation with tumor diameter. ATF4 knockdown promoted cell proliferation, invasion, and S-phase cell cycle and inhibited apoptosis in SW480 cells. In contrast, ATF4 overexpression had the opposite effect. Furthermore, ATF4 overexpression enhanced ATF4 binding to the ASNS promoter region. ATF4 knockdown significantly inhibited the expression of p-GCN2 and ASNS, whereas ATF4 overexpression significantly upregulated their expression. ATF4 inhibited CC cell viability, clone formation ability, migration, and invasion and promoted apoptosis, possibly by regulating the expression of p-GCN2 and ASNS. Our study provides a novel potential therapeutic target for the treatment of CC.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have