Abstract

Altered RNA metabolism and misregulation of transactive response DNA-binding protein of 43kDa (TDP-43), an essential RNA-binding protein (RBP), define amyotrophic lateral sclerosis (ALS). Intermediate-length polyglutamine (polyQ) expansions of Ataxin-2, a like-Sm (LSm) RBP, are associated with increased risk for ALS, but the underlying biological mechanisms remain unknown. Here, we studied the spatiotemporal dynamics and mRNA regulatory functions of TDP-43 and Ataxin-2 ribonucleoprotein (RNP) condensates in rodent (rat) primary cortical neurons and mouse motor neuron axons invivo. We report that Ataxin-2 polyQ expansions aberrantly sequester TDP-43 within RNP condensates and disrupt both its motility along the axon and liquid-like properties. We provide evidence that Ataxin-2 governs motility and translation of neuronal RNP condensates and that Ataxin-2 polyQ expansions fundamentally perturb spatial localization of mRNA and suppress local translation. Overall, our results support a model in which Ataxin-2 polyQ expansions disrupt stability, localization, and/or translation of critical axonal and cytoskeletal mRNAs, particularly important for motor neuron integrity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.