Abstract

Ataxic gait monitoring and assessment of neurological disorders belong to important areas that are supported by digital signal processing methods and artificial intelligence (AI) techniques such as machine learning (ML) and deep learning (DL) techniques. This paper uses spatio-temporal data from Kinect sensor to optimize machine learning model to distinguish between ataxic and normal gait. Existing ML-based methodologies fails to establish feature correlation between different gait parameters; thus, exhibit very poor performance. Further, when data is imbalanced in nature the existing ML-based methodologies induces higher false positive. In addressing the research issues this paper introduces an extreme gradient boost (XGBoost)-based classifier and enhanced feature optimization (EFO) by modifying the standard cross validation (SCV) mechanism. Experiment outcome shows the proposed ataxic person identification model achieves very good result in comparison with existing ML-based and DL-based ataxic person identification methodologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.