Abstract
The advent of next-generation synchrotron radiation sources and X-ray free-electron lasers calls for high-quality Bragg-diffraction crystal optics to preserve the X-ray beam coherence and wavefront. This requirement brings new challenges in characterizing crystals in Bragg diffraction in terms of Bragg-plane height errors and wavefront phase distortions. Here, a quantitative methodology to characterize crystal optics using a state-of-the-art at-wavelength wavefront sensing technique and statistical analysis is proposed. The method was tested at the 1-BM-B optics testing beamline at the Advanced Photon Source for measuring silicon and diamond crystals in a self-referencing single-crystal mode and an absolute double-crystal mode. The phase error sensitivity of the technique is demonstrated to be at the λ/100 level required by most applications, such as the characterization of diamond crystals for cavity-based X-ray free-electron lasers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.