Abstract
The solution to the canonical problem of a radiating infinitesimal electric dipole antenna that is centred in a multilayered, concentric metamaterial-based spherical shell system is presented. It is demonstrated that when this system is electrically small, a specifically designed homogenous and isotropic epsilon-negative (ENG) layer can function as a distributed matching element to the antenna enabling a resonant radiation behaviour. A finite element model of the corresponding centre-fed cylindrical dipole antenna-based resonant system confirms that such designed ENG-based spherical layers can act as a distributed matching element, which can be optimised to produce a reactance free, resistively matched and, hence, efficient radiating system. Several limits on the dispersion properties of the homogenous and isotropic ENG media used in these matching layers are considered and their impact on the bandwidth of these resonant systems is established. Although the dispersionless resonant antenna-ENG system has a bandwidth substantially below the Chu limit, the bandwidths of the corresponding dispersive systems are shown to be at or just slightly below the Chu limit. An analytical model of an idealised gaseous plasma-based ENG layer sandwiched between two glass layers, a potential realisation of these metamaterial-based ENG spherical shell systems, is introduced and its solution is used to study these efficiency and bandwidth issues further. Resonant systems based on active ENG metamaterial layers realised with two types of idealised gain medium models are shown to have bandwidths that approach the idealised dispersionless medium values and, consequently, are substantially below the Chu limit
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.