Abstract
Abstract Trilobites appeared and diversified rapidly in the Cambrian, but it is debated as to whether their radiations and extinctions were globally synchronous or geographically restricted and diachronous. The end of the early Cambrian is a classic example—it has traditionally been defined by the extinction of olenellid and redlichiid trilobites and the appearance of paradoxidid trilobites. Here we integrate the global biostratigraphy of these three trilobite groups with high-precision tuff and tandem detrital zircon U-Pb age constraints to falsify prior models for global synchronicity of these events. For the first time, we demonstrate that olenellid trilobites in Laurentia went extinct at least 3 Ma after the first appearance of paradoxidids in Avalonia and West Gondwana (ca. 509 Ma). They also disappeared before the extinction of redlichiids and prior to the base of the Miaolingian at ca. 506 Ma in South China. This indicates that these three trilobite groups (paradoxidids, olenellids, and redlichiids) and their associated biotas overlapped in time for nearly 40% of Cambrian Epoch 2, Age 4. Implications of this chronological overlap are: (1) trilobite transitions were progressive and geographically mediated rather than globally synchronous; and (2) paleontological databases underestimate the diversity of the early Cambrian. This ∼3 Ma diachroneity, at a critical time in the early evolution of animals, also impacts chemostratigraphic and paleoclimatic data sets that are tied to trilobite biostratigraphy and that collectively underpin our understanding of the Cambrian Earth system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have