Abstract

In this paper, we introduce a distributed secondary voltage and frequency control scheme for an islanded ac microgrid under event-triggered communication. An integral type event-triggered mechanism is proposed by which each distributed generator (DG) periodically checks its triggering condition and determines whether to update its control inputs and broadcast its states to neighboring DGs. In contrast to existing event-triggered strategies on secondary control of microgrids, the proposed event-triggered mechanism is able to handle the consensus problem in case of asynchronous communication. Under the proposed sampled-data based event-triggered mechanism, DGs do not need to be synchronized to a common clock and each individual DG checks its triggering condition periodically, relying on its own clock. Furthermore, the proposed method efficiently reduces communication rate. We provide sufficient conditions under which microgrid's frequency and a critical bus voltage asymptotically converge to the nominal frequency and voltage, respectively. Finally, effectiveness of our proposed method is verified by testing different scenarios on an islanded ac microgrid benchmark in the MATLAB/Simulink environment as well as a hardware-in-the-loop (HIL) platform, where the physical system is modeled in the Opal-RT and the cyber system is realized in Raspberry Pis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.