Abstract

Most existing consensus control in multi-agent systems (MASs) require agents to update their state synchronously, which means that some agents need to wait for all individuals to complete the iteration before starting the next iteration. To overcome this bottleneck, this paper studied asynchronous consensus problems of second-order MASs (SOMASs) with aperiodic communication. An asynchronous pulse-modulated intermittent control (APIMC) with heterogeneous pulse-modulated function and time-varying control period, which can unify impulsive control and sampled-data control, is proposed for the consensus of SOMASs. A time-varying discrete system is constructed to describe the evolution of the sample values of position and velocity of the SOMAS. Then, by the analysis tools from the stochastic matrix and the properties of the Laplace matrix of graph, some effective conditions are obtained to show the relationship between the convergence of the controlled SOMASs and the control parameters. Finally, a 300-node SOMAS whose topology is a random geographic network is included to verify the feasibility of the proposed control and the correctness of the theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.