Abstract
With the continuous advancement of deep learning technology, U-Net–based algorithms for image denoising play a crucial role in medical image processing. However, most U-Net-based medical image denoising algorithms typically have large parameter sizes, which poses significant limitations in practical applications where computational resources are limited or large-scale patient data processing are required. In this paper, we propose a medical image denoising algorithm called AsymUNet, developed using an asymmetric U-Net framework and a spatially rearranged multilayer perceptron (MLP). AsymUNet utilizes an asymmetric U-Net to reduce the computational burden, while a multiscale feature fusion module enhances the feature interaction between the encoder and decoder. To better preserve the image details, spatially rearranged MLP blocks serve as the core building blocks of AsymUNet. These blocks effectively extract both the local and global features of the image, reducing the model’s reliance on prior knowledge of the image and further accelerating the training and inference processes. Experimental results demonstrate that AsymUNet achieves superior performance metrics and visual results compared with other state-of-the-art methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.