Abstract

Abstract Consider a supercritical Crump‒Jagers process in which all births are at integer times (the lattice case). Let μ̂(z) be the generating function of the intensity of the offspring process, and consider the complex roots of μ̂(z)=1. The root of smallest absolute value is e-α=1∕m, where α>0 is the Malthusian parameter; let γ* be the root of second smallest absolute value. Subject to some technical conditions, the second-order fluctuations of the age distribution exhibit one of three types of behaviour: (i) when γ*>e-α∕2=m-1∕2, they are asymptotically normal; (ii) when γ*=e-α∕2, they are still asymptotically normal, but with a larger variance; and (iii) when γ*<e-α∕2, the fluctuations are in general oscillatory and (degenerate cases excluded) do not converge in distribution. This trichotomy is similar to what has been observed in related situations, such as some other branching processes and for Pólya urns. The results lead to a symbolic calculus describing the limits. The asymptotic results also apply to the total of other (random) characteristics of the population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.