Abstract

Convergence in probability of Malthus normed supercritical general branching processes (i.e. Crump-Mode-Jagers branching processes) counted with a general characteristic are established, provided the latter satisfies mild regularity conditions. If the Laplace transform of the reproduction point process evaluated in the Malthusian parameter has a finite ‘x log x-moment’ convergence in probability of the empirical age distribution and more generally of the ratio of two differently counted versions of the process also follow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.