Abstract
In the present paper, approximate analytical and numerical solutions to nonlinear eigenvalue problems arising in nonlinear fracture mechanics in studying stress-strain fields near a crack tip under mixed-mode loading are presented. Asymptotic solutions are obtained by the perturbation method (the artificial small parameter method). The artificial small parameter is the difference between the eigenvalue corresponding to the nonlinear eigenvalue problem and the eigenvalue related to the linear “undisturbed” problem. It is shown that the perturbation technique is an effective method of solving nonlinear eigenvalue problems in nonlinear fracture mechanics. A comparison of numerical and asymptotic results for different values of the mixity parameter and hardening exponent shows good agreement. Thus, the perturbation theory technique for studying nonlinear eigenvalue problems is offered and applied to eigenvalue problems arising in fracture mechanics analysis in the case of mixed-mode loading.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.