Abstract
The creep crack problem in damaged materials under mixed mode loading is considered. The class of the self-similar solutions to the plane creep crack problems in a damaged medium under mixed-mode loading is given. With the similarity variable and the self-similar representation of the solution for a power-law creeping material and the power-law damage evolution equation the near crack-tip stresses, creep strain rates and continuity distributions for plane stress conditions are obtained. The self-similar solutions are based on the hypothesis of the existence of the completely damaged zone near the crack tip. It is shown that the asymptotical analysis of the near crack-tip fields gives rise to the nonlinear eigenvalue problems. The technique permitting to find the eigenvalues numerically is proposed and numerical solutions of the nonlinear eigenvalue problems arising from the mixed-mode crack problems in a power-law medium under plane stress conditions are obtained. Using the approach the eigenvalues different from the eigenvalues corresponding to the Hutchinson-Rice-Rosengren (HRR) problem are found. Having obtained the eigenspectra and eigensolutions the geometry of the completely damaged zone in the vicinity of the crack tip can be found for all values of the mixity parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.