Abstract
We provide the rate of convergence of the Bayes action derived from non smooth loss functions involved in Bayesian robustness. Such loss functions are typically not twice differentiable but admit right and left second derivatives. The asymptotic limit of three measures of global robustness is given. These measures are the range of the Bayes actions set associated with a class of loss functions, the maximum regret of using a particular loss when the subjective loss belongs to a given class and the range of the posterior expected loss when the loss ranges over a given class. An application to prior robustness with density ratio classes is provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.