Abstract
Similarly to the determination of a prior in Bayesian Decision theory, an arbitrarily precise determination of the loss function is unrealistic. Thus, analogously to global robustness with respect to the prior, one can consider a set of loss functions to describe the imprecise preferences of the decision maker. In this paper, we investigate the asymptotic behavior of the Bayes actions set derived from a class of loss functions. When the collection of additional observations induces a decrease in the range of the Bayes actions, robustness is improved. We give sufficient conditions for the convergence of the Bayes actions set with respect to the Hausdorff metric and we also give the limit set. Finally, we show that these conditions are satisfied when the set of decisions and the set of states of nature are subsets of Rp.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.